|
עמוד:42
ו . המיקרוסקופ ב סעיף ג אורכו של חרק הוא חצי מילימטר במציאות, ולכן אורכו בתמונה שנראתה במיקרוסקופ הוא 2 ס"מ . מומלץ לבקש מהתלמידים להסביר כיצד הם הגיעו לתשובה . עומדות לרשותם מגוון דרכים, למשל : מ"מ במציאות הוא חצי ממה שמופיע בשורה הראשונה בטבלה, ולכן 1 2 1 . אפשר לראות כי התשובה היא 2 ס"מ ( כי חצי מ- 4 ס"מ הם 2 ס"מ ) . 2 . אפשר לראות כי 5 . 0 מ"מ במציאות קטן פי 10 ממה שמופיע בשורה האחרונה בטבלה, ולכן התשובה היא 2 ס"מ ( כי עשירית מ- 20 ס"מ הם 2 ס"מ ) . 3 . אפשר לחשב ישירות את מידת ההגדלה הנתונה בעזרת שברים פשוטים או עשרוניים 1 2 או 20 = 40 × 5 . 0 ) , כלומר התשובה היא 20 מ"מ, שהם 2 ס"מ . ( = # 20 40 ב סעיף ד מחשבים את הכיוון ההפוך : נתון שאורכו של חרק הוא 10 ס"מ בתמונה שנראתה במיקרוסקופ ומוצאים את אורכו במציאות . התשובה היא שאורכו במציאות הוא 5 . 2 מ"מ . גם כאן יש מגוון אפשרויות לדרך מציאת התשובה : 1 . אפשר לראות כי 10 ס"מ במיקרוסקופ הם חצי ממה שמופיע בשורה האחרונה בטבלה, ולכן התשובה היא 5 . 2 מ"מ ( כי חצי מ- 5 מ"מ הם 5 . 2 מ"מ ) . 2 . אפשר להיעזר בתשובה לסעיף ג ובשורה השנייה בטבלה : 10 ס"מ במיקרוסקופ שווה לסכום של 8 ס"מ ( השורה השנייה בטבלה ) ו- 2 ס"מ ( התשובה לסעיף ג ) , ולכן במציאות מדובר ב- 5 . 2 מ"מ ( הסכום של 2 מ"מ [ השורה השנייה בטבלה ] ו- 5 . 0 מ"מ [ הנתון מסעיף ג ] ) . 3 . אפשר לחשב ישירות בעזרת מידת ההגדלה הנתונה . ממירים סנטימטרים במילימטרים : 10 ס"מ במיקרוסקופ הם 100 מ"מ במיקרוסקופ . מחלקים ב- 40 ומקבלים 5 . 2 מ"מ במציאות ( 5 . 2 = 40 : 100 ) . לאחר השלמת כל סעיפי הפעילות, לצורך תרגול נוסף, אפשר לבקש מהתלמידים לחשב מידות של עצמים נוספים ולהסתמך על הקשרים בטבלה ועל מידת ההגדלה הנתונה . דוגמאות : במיקרוסקופ רואים עצם שאורכו 28 ס"מ, מה אורכו במציאות ? אורך העצם במציאות הוא 5 . 4 מ"מ, מה אורך העצם שרואים במיקרוסקופ ? אורך העצם במציאות הוא 6 מ"מ, מה אורך העצם שרואים במיקרוסקופ ? 42
|
|